DIMETHYLGOLD(III) COMPLEXES OF SALICYLALDIMINE SCHIFF-BASES

K. S. MURRAY. B. E. REICHERT and B. 0. WEST *Department of Chemistry, Monash University, Clayton, Victoria, 3168 (Australia)* **(Received March 13th. 1973)**

SUMMARY

Dimethylgold complexes with bidentate N-alkyl- and N-aryl-salicylaldimines, Me,AuSal=N-R, as well as bridged complexes of the quadridentate ligands N , N' -ethylenebis(salicylaldimine) and N , N' -o-phenylenebis(salicylaldimine), (Me₂-Au), Salen and (Me, Au), Salophen. have been synthesized. The latter is the first example of a compound in which Salophen behaves as a bridging ligand. 'H NMR, infrared and mass spectra have been measured. The gold-carbon bond in these compounds does not appear to undergo reaction without complete decomposition of the complex.

INTRODUCTION

The only complexes of gold with Schiff-base chelate ligands reported to date have been mixed valence compounds of the type $[Au^{\text{III}}(Sal=N-R), T[Au^{\text{I}}C], T]$ $(Sal=N-R=N-substituted-salicylaldiminato anion)$. We report here the preparation and properties of organogold salicylaldimine chelates, Me₂AuSal=N-R, which are the first examples of organogold Schiff-base complexes. Related acetylacetone complexes have been reported^{2,3}, these being less stable than the salicylaldimine compounds. This paper also describes some binuclear dimethylgold derivatives containing bridging quadridentate ligands. Spectral measurements have been made on both the mono and binuclear derivatives, and some attempts made to obtain reactions of the goldcarbon bond.

RESULTS AND DISCUSSION

Syntheses

 $[\text{Me}_2\text{AuI}]_2^3$ in methanol reacts with the thallium(I) salts of Schiff bases TlSal=N-R (R = CH₃, C₆H₁₁, C₆H₅), Tl₂Salen [SalenH₂ = N,N'-ethylenebis-(salicylaldimine)] and Tl₂Salophen [SalophenH₂ = N,N'-o-phenylenebis(salicylaldimine)] to give the complexes Me₂AuSal=N-R, (Me₂Au)₂Salen and (Me₂Au)₂-Salophen. The pale yellow mononuclear compounds are readily-soluble in methanol and are isolated from the solution after liltering off the thallium(I) iodide. They are also readily soluble in most organic solvents, though only slightly in hexane, and presumably have the square planar structure shown in Fig. 1. (Me₂Au)₂Salen and (Me,Au),Salophen *are* much less solubIe (particularly the Salen complex) and are separated from thallium(I) iodide by dichloromethane extraction. They are expected to have the binuclear bridged structure proposed for compounds of rhodium4. iridium⁴, palladium^{5.6} and platinum⁶. The formation of the Salophen complex is particularly interesting as it was previously believed that Salophen was not sufficiently flexible to permit a bridging configuration⁴. However it is clear from the formation of this compound that it is possible for Salophen to distort sutliciently for bridging to occur, although the nature of this distortion is not clear.

Fig. 1.

All the complexes show enhanced thermal stability, compared to other gold organometallic compounds, decomposing above 1009 They are also fairly stable to light, in contrast to the acetylacetone derivative³, although solutions slowly decompose in direct sunlight and more rapidly under UV irradiation.

Spectra

The ¹H NMR spectra of the complexes are shown in Table 1. Low solubility prevented measurement of the NMR spectrum of the Salen complex. The methyl $group(1)$ is assigned as that *cis* to the nitrogen donor of the Schiff base because of its shift to higher field when an N-alkylsalicylaldimine is replaced by the Sal=N- C_6H_5 ligand, while Me(2) remains almost unaffected. This anisotropic shielding effect of the aromatic ring on *a* nearby proton has previously been used to assign the structures of other organometallic Schiff base complexes^{5,6}. Hence the more shielded of the two methyl groups is that *trans* to the oxygen of the Schiff base, suggesting that this is a better donor than the nitrogen. That the oxygen is in fact a stronger donor should

TABLE 1

'H NMR SPECTRA"

 α in deuterochloroform. β Doublet. J(CH=N-CH₃) 1.3 Hz.

not be surprising in view of the fact that in the salicylaldiminato anion the negatively charged oxygen is far more readily protonated than the neutral nitrogen atom. In allylpalladium Schiff base compounds⁵ the protons attached to the carbon trans to the oxygen are also more shielded, but here the effect may also be rationalized in terms of σ and π bonding contributions for the two ends of the allyl group, as in related phosphine complexes^{7,8}. These effects illustrate that care must be taken when discussing *trans* effects, particularly when π systems are involved. In the case of the gold complexes described here the results clearly indicate that the oxygen of the salicylaldimine produces greater shielding in the methyl group *tram* to it (presumably due to a higher electron density) although the precise effects in terms of bond strengths, polarization or even π bonding contributions from the imine nitrogen cannot be considered as clear. The starting material (Me,AuI], which has an iodide bridged structure shows the methyl group resonance at δ 6.08 ppm, indicating much less shielding than in the Schiff base complexes, consistent with the much weaker coordinating properties of the iodide ion, but again it would be difficult to predict the precise electronic effects.

In $(Me₂Au)₂Salophen$ the methyl group (1) displays a similar upfield shift to that in Me₂AuSal=N-C₆H₅, suggesting that the orientation of the molecule is such as to enable the bridging phenylene group to exert an anisotropic shielding effect on this methyl_ As only two methyl resonances are observed both ends of the molecule must be magnetically equivalent, at least in solution on the NMR time scale.

The infrared spectra of the complexes in the region $1700-1100$ cm⁻¹ are typical of those expected for salicylaldimine chelate complexes and are shown in Table 2. All show two fairly strong bands between 1640 and 1580 cm^{-1}, and a further fairly intense band between 1540 and 1530 cm^{-1} . Assignments of infrared spectra

TABLE 2

of Schiff base complexes have proved difficult and uncertain, due to coupled vibrations and complexity of the spectra, most studies having been made on $copper(II)$ complexes of arylsalicylaldimines $9-11$. On the basis of $15N$ substitution the principal bands in Cu^{II}(SaI=N-C₆H₄CH₃-p), have been assigned¹¹. There are three bands in the region 1640 to 1580 cm⁻¹, two assigned to $v(C=N)$ and one to $v(C=C)$, whereas the gold compIexes show only two bands. However the higher frequency band is very intense and somewhat broadened, indicating that overlap may be occurring. The starting material $\left[\text{Me}_2\text{AuI}\right]_2$ displays two sharp bands at 1215 and 1185 cm⁻¹ which are presumably due to δ_s (CH₃). Bands due to this vibration will occur in a similar region in the Schiff base complexes but it is impossible to decide which bands these are.

All the complexes display the parent ion in the mass spectrum. The mononuclear complexes of the bidentate ligands also show clearly the ions $AuSal=N-R^{+}$ and Sal=N-R⁺. Metastable peaks corresponding to the fragmentation Me₂AuSal= N-R⁺ \rightarrow AuSal=N-R⁺ are observed. The complexes of the quadridentate Iigands give peaks corresponding to the ions Me₂AuLCH⁺, Me₂AuLH⁺, MeAuL^{$+$} and AuL^+ (L = Salen, Salophen).

Reactions

Reactions with several reagents which may be expected to react with a metalalkyl bond were performed but none of the products hoped for could be obtained. Liquid $SO₂$ produced only complete decomposition, metallic gold being evident, and no insertion product could be isolated, although insertion has been observed for a trimethylgold compound¹². Attempts to replace the methyl groups with heptafIuoropropy1 groups (which may be expected to bond more strongly to the metal) by heating with heptaffuoropropyl iodide either neat or in methanol led only to recovery of starting material. A similar reaction in methanol under UV irradiation produced extensive decomposition with formation of metallic goId, but no evidence for perfluoroalkyl groups in the product could be obtained, starting material still being apparent. It appears that once the gold-carbon bond is ruptured a new bond is not readily formed and only metallic gold will result.

EXPERIMENTAL

Instrumentation

¹H NMR spectra were measured on a Varian Associates HA-100 spectrometer and infrared spectra on a Perkin-Elmer 521 spectrophotometer. Mass spectra were obtained with a Hitachi-Perkin-Elmer RMU-6E instrument using an ion chamber temperature of 200 $^{\circ}$ (except for Me₂AuSal=N-CH₃ where 90 $^{\circ}$ was used) and an electron energy of 70 eV.

Starting materials

 $[Me₂AuI]₂$ was prepared as in the literature³. The thallium(I) Schiff bases were obtained by reaction of the ligand with thallium(I) ethoxide in ethanol¹³.

an
Bandar Samur (1955), Andrew Samur (1956), Andrew Samur (1956)

Syntheses

 $Me₂AuSal=N-R$ ($R = CH₃, C₆H₁₁, C₆H₅$). [Me₂AuI]₂ (200 mg, 0.28 mmol)

in methanol (40 ml) was treated while stirring with the stoichiometric quantity of the appropriate thallium(I) Schiff base compound. After stirring for approx. $1\frac{1}{2}$ h the mixture was filtered and the methanol solution evaporated under reduced pressure. Recrystallization of the residue from dichloromethane/hexane gave the pure compound_

 $(Me₂Au)₂Salen$ and $(Me₂Au)₂Salophen$. These were formed as above from $\lceil \text{Me}_2 \text{AuI} \rceil_2$ (200 mg, 0.28 mmol) and Tl₂Salen or Tl₂Salophen (0.28 mmol) in methanol (50 ml), the reaction time being increased to 3 h. Due to their lower solubility they were isolated by filtering off the solid (in the case of the Salen complex) or evaporating to dryness (Salophen complex), extracting the mixture with dichloromethane and reducing the volume of the solution under reduced pressure after addition of hexane.

Analytical data, molecular weights, melting points and yields for all the compounds are given in Table 3.

Reactions

Sulphrrr dioxide

 SO_2 was condensed onto Me₂AuSal=N- C_6H_5 at -78° and then allowed to evaporate at 0° . Some metallic gold was evident and no insertion product could be isolated.

C_3F_7I

(a). Me₂AuSal=N-C₆H₅ and (Me₂Au)₂Salen were each heated under reflux with C_3F_7I both alone and with addition of methanol (to increase solubility). In the latter case some darkening due to formation of metallic gold occurred after approx. $\frac{1}{2}$ h, but in all cases only unchanged starting material could be recovered from the mixture.

(b). Me₂AuSal=N-C₆H₅ (100 mg) dissolved in methanol (50 ml) was treated with C_3F_7I (2 ml) and irradiated with a UV lamp for 3 h. Substantial decomposition

TABLE 3

ANALYTICAL DATA. MOLECULAR WEIGHTS, MELTING POINTS AND YIELDS

Complex	Formula	Analyses found (calcd.) $(\%)$				m/e	M.p.	Yield
		ϵ	Н	N	Au	found (Calcd.)	$(^{\circ}C)$	(%)
Me , AuSal=N-CH,	$C_{10}H_{14}NOAu$	33.32	3.78	3.67	53.9	361	103 (sl. dec.)	62
		(33.25)	(3.91)	(3.88)	(54.5)	(361)		
$Me2AuSal=N-C6H11C15H22NOAu$		42.17	5.28	3.76	46.5	429	114 (dec.)	52
		(41.97)	(5.17)	(3.26)	(45.9)	(429)		
$Me2AuSal=N-C6H5 C15H16NOAu$		42.21	3.87	3.11	46.8	423	154 (dec.)	75
		(42.56)	(3.81)	(3.31)	(46.5)	(423)		
(Me,Au) , Salen	$C_{20}H_{26}N_{2}O_{2}Au$	33.18	3.81	3.71	54.5	720	Dec. at 180-200° 70	
		(33.35)	(3.64)	(3.89)	(54.7)	(720)		
$(Me2Au)2Salophen$	$C_{24}H_{26}N_{2}O_{2}Au_{2}$	37.71	3.43	3.65	51.0	768	Dec. at 190-200 ^e 71	
		(37.51)	(3.41)	(3.65)	(51.3)	(768)		

-.-

 \mathbb{R}

a Decomposes without melting.

occurred, as evidenced by the formation of metallic gold. The infrared spectrum of the residue obtained by evaporating the filtered solution indicated that it consisted largely of starting material, no CF vibrations being apparent.

REFERENCES

- 1 S. Yamada and K. Yamanouchi, *Bull. Chem. Soc. Jap.*, 43 (1970) 1744.
- 2 C. S. Gibson and J. L. Simonsen, *J. Chem. Sot., (1930) 2531.*
- *3* F. H. Brain and C. S. Gibson, *J. Chem. Sot.,* (I 939) *762.*
- *4* R. J. Cozens. K. S. Murray and B. 0. West, *J. Organometal. Chem.. 27 (1971) 399.*
- *5* B. E. Reichert and B. 0. West, *J. Organometal. Chem., 36* (1972) C29.
- *6* B. E. Reichert and B. 0. West, *J. Organometal. Chem., 54 (1973) 391.*
- *7 G.* L. Statton and K. C. Ramey. *J. Amer. Chem. Sot., 88 (1966) 1327.*
- *8* J. Powell and B. L. Shaw. *J. Chem. Sot. A. (1967) 1839.*
- 9 J. E. Kovacic. *Spectrochim. Acta, 23A* (1967) *183.*
- *10* E. P. Dudek and G. Dudek, Inorg. Nucl. *Chem. Lett.. 3* (1967) *241.*
- 11 G. C. Percy and D. A. Thornton, *Inorg. Nucl. Chem. Lett.*, 7 (1971) 599.
- 12 k Johnson. R. J. Puddephatt and J. L. Quirk. *J. Chem. Sot, Chem Commun,* (1973) 938.
- *13* R. J. Cozens, K. S. Murray and B. 0. West, *Aust. J. Chem.. 23* (1970) *653.*